INDONESIA SMART GRID

Indra Ardhanayudha Aditya

PT PLN (Persero) RESEARCH INSTITUTE

5th ASEAN SMART GRID CONGRESS 3 December 2019, Malaysia

PLTDG Pesanggaran

左 PLN

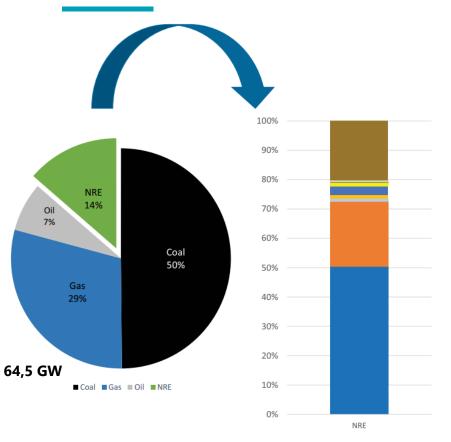
www.pln.co.id

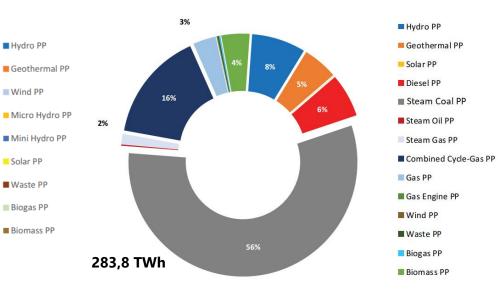
- ABOUT PLN
- ENERGY MIX
- ENERGY & POWER DEVELOPMENT
- ENERGY CHALLENGE IN INDONESIA
- PLN SMART GRID

One of the largest Indonesia's state-owned company within USD 102,78 Billion assets and revenue USD 18,82 Billion/year

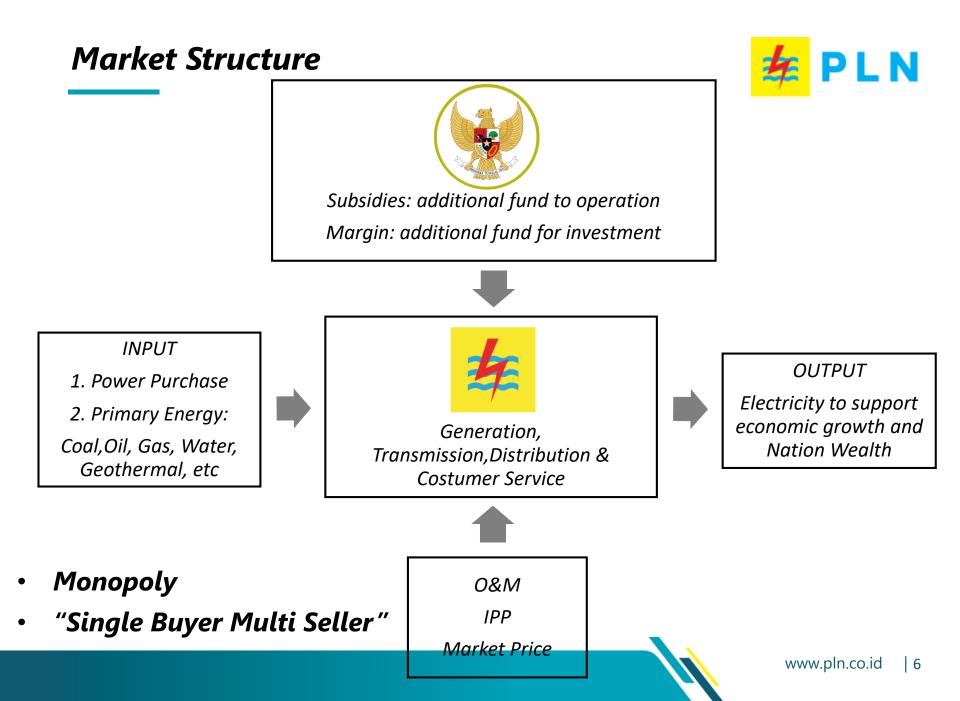
Total capacity 57,8 GW : •

- 41,1 GW (71%) PLN
- 16,7 GW (29%) IPP
- 53.278 kms transmission line
 - 131.164 MVA power transformers
- 953.459 kms distribution lines
- Over 71,9 million customers (>30 million using pre-paid meter)
- Employees 54.225


PLN Grid


7 high voltages (150,275 &500 kV), 200 medium voltages (20 kV), 900 off grid (400 V)

Energy Mix



Electricity Generation by Energy Source Year 2018

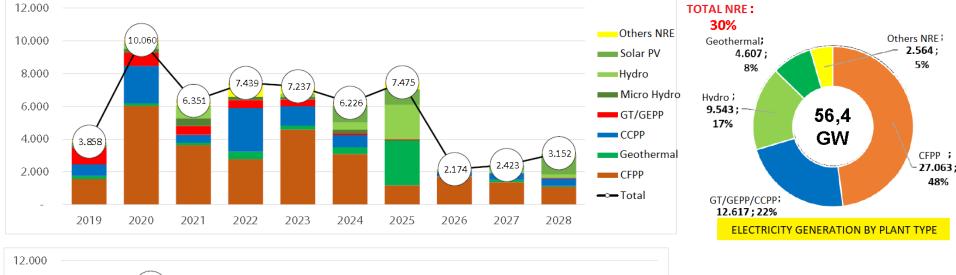
左 PLN

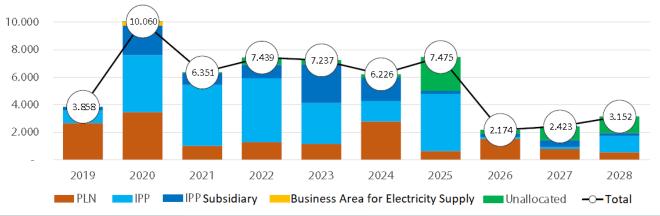
Electricity Production by Energy Source Year 2018

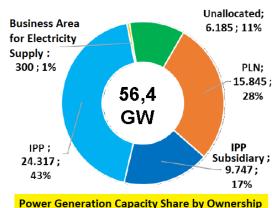
Electricity Price

No.	Country	Unit	Residential	Low	Medium Voltage	Medium Voltage	High Voltage			
				Voltage	Commercial	Industrial	Industrial			
1	Indonesia	US	11	11	8,36	8,36	7,47			
2	Malaysia		9,65	13,11	9,27	8,01	7,49			
3	Thailand		12,41 9,09 8,75		8,75	7,76	7,76			
4	Singapore	cents/kWh	19,08	13,79	13,5	12,6	12,25			
5	Philippines		18,26	11,86	11,61	11,31	11,25			
6	Vietnam		10,34	13,12	12,07	7,62	7,23			
						Exchange rate: Rp. 13.342/USD				

Sources:


Indonesia:	www.esdm.go.id
Malaysia:	https://www.tnb.com.my/residential/pricing-tariffs
Thailand:	http://www.boi.go.th/index.php?page=utility_costs&language=en
Singapura:	https://www.ema.gov.sg/Electricity_Costumers.aspx
Philippines:	http://www.meralco.com.ph/consumer-information/rates-archive
Vietnam:	http://en.evn.com.vn/c3/gioi-thieu-I/Electricity-price-9-28.aspx




ENERGY AND POWER DEVELOPMENT

Additional Generation Capacity

www.pln.co.id | 8

Source: Electricity Supply Business Plan 2019-2028

Development Plan for NRE

No.	RE Power Plant	Capacity	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	Total
1	Geothermal	MW	190	151	147	455	245	415	2.759	45	145	55	4.607
2	Hydro	MW	154	326	755	-	182	1.484	3.047	129	466	1.467	8.010
3	Mini Hydro	MW	140	238	479	200	168	232	27	20	20	10	1.534
4	Solar	MWp	63	78	219	129	160	4	250	-	2	2	907
5	Wind	MW	1	-	30	360	260	50	150	-	-	5	855
6	Biomass/waste	MW	12	139	60	357	50	103	19	5	15	35	795
7	Ocean	MW	1	-	7	-	-	-	-	-	-	-	7
8	Bio-Fuel	Million litre	520	487	291	167	151	146	154	159	166	175	2.416
Total		MW	559	932	1.697	1.501	1.065	2.288	6.252	199	648	1.574	16.715

ENERGY CHALLENGE IN INDONESIA

1. Operational Efficiency

- T&D losses is 8.75% (2017), below ASEAN average 7.24% (2016)
- *Limited visibility under the Low-Voltage network*

2. Service Reliability

- Reserve margins of small systems outside Java-Bali are still under 30%
- The product quality is still relatively low (SAIDI, SAIFI) comparing to ASEAN countries
- Demand Response as an alternative deems more data at the demand side (customer)

3. Clean Energy (CO2 emission)

- Electricity industry contributes to 33% CO2 emission (RUEN, 2017)
- Indonesia commits to reduce 29% of CO2 (RUEN, 2017)

4. Sustainability

- It is estimated that Oil, gas, and coal will only last up to 12, 33, and 82 years respectively
- *RE development is expected to reach 23% in 2025*

PLN SMART GRID OBJECTIVE

1. Energy Efficiency Solution

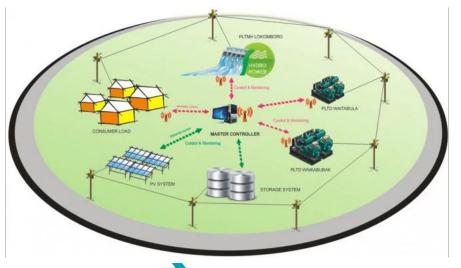
- Improve Non-Technical Losses
- Client side demand information integration through two-ways metering infrastructure

2. Service Reliability Solution

- Prevent or reduce black-out and minimize feeder outage
- Better accessibility to the network (real time monitoring)
- 3. Better Access & Lower CO2 Emission (Productivity Solution)
 - Increase participation of RE, especially the smaller or isolated island
 - Combining and integrating RE or Distributed Generation into the grid

PLN Smart Grid Related Projects

Smart Micro Grid toward "SUMBA Green Island"


A pilot project brought together with Indonesian Agency for the Assessment and Application of technology(BPPT) and Indonesian Directorate-General of RE and Renewable Conservation

Objectives:

- Demonstrate that RE intermittency could be penetrated more into the grid while maintain its reliability through smart grid.
- Reduce the reliance on limited fossil fuels

Lesson Learned:

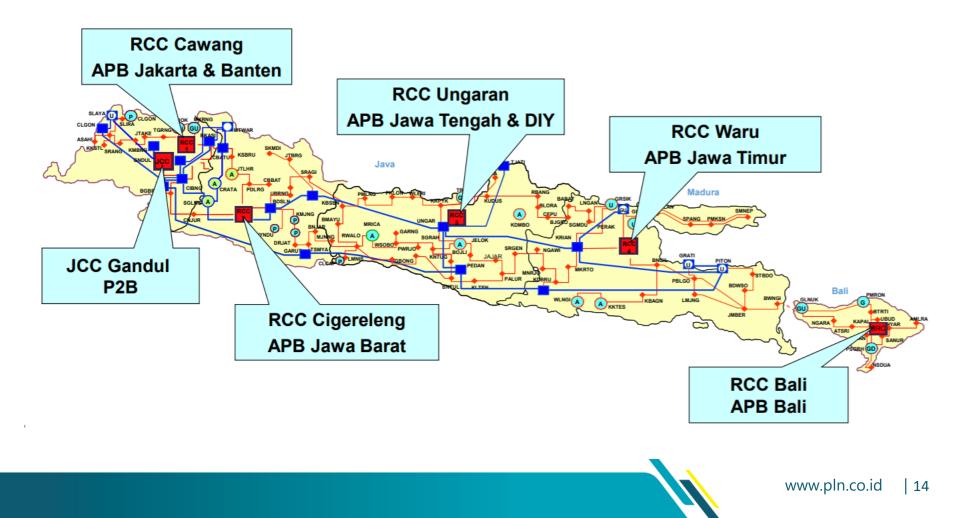
ICT allows solar PV feed into the grid gradually and then reduce the diesel load while maintaining the demand.

Smart Community in Karawang Industrial Estate

A pilot project brought together with Indonesian Directorate-General of RE and Renewable Conservation and New Energy and Industrial Technology of Japan

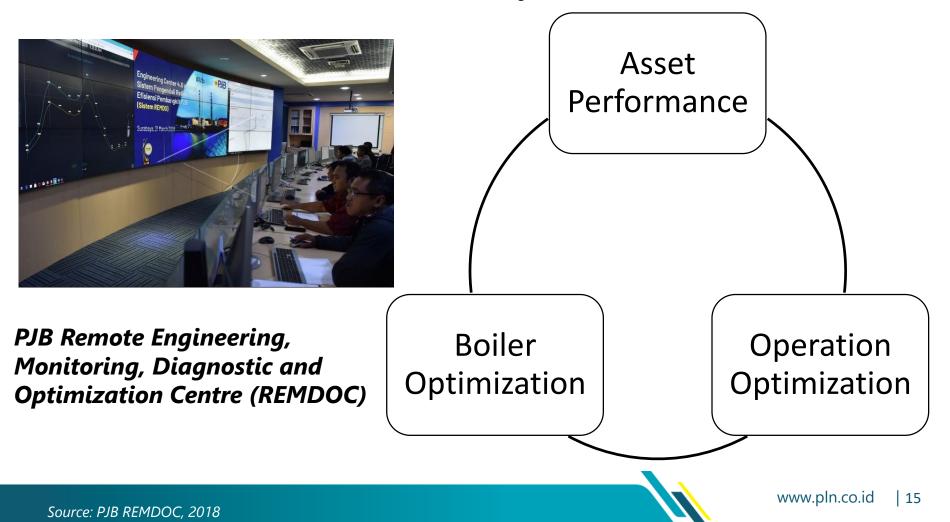
Objectives:

Business simulation of Demand Response management through Power Quality and Incentive/Premium tariff


Lesson learned:

ICT combined with appropriate business scheme enables Demand Response Management which may result in better reliability and productivity

PLN Smart Grid Related Projects


Smart System- JAWA BALI

PLN Smart Grid Related Projects

Power Generation → **Predictive Analytics**

AMI (advanced Metering Infrastructure)

Several small scale projects of Two-Ways System fully or partially funded by third parties.

Pilot Projects:

- 1. Two-ways communication using SMS for BTS and Adv. Billboard (2014 – 2017)
- 2. Two ways for 1000 meters in Bali island using Low Power Wide Area Network (2016)
- 3. Business Simulation for data/multimedia service and smart home using cellular network (3G/4G) in BSD Serpong
- 4. Two ways for small community in Nusa Lembongan island in Bali using BPLC technology (2018)
- 5. Two ways for 1344 meters in Batam island using BPLC technology (2018)
- 6. Two ways for 308 meters in Cengkareng are using BPLC technology (2018)

Objectives:

- 1. Performance measurement of Communication technologies for two-ways system
- 2. Proof of Concept of Two-ways features such as hourly data reads, wireless top-up for prepaid etc.

Lesson learned :

- 1. No silver bullet in communication technology for the whole Indonesia, depends heavily on the geographical condition and technology readiness
- 2. A segmented and clustered approach may easier to implement and measure compare to one that is dispersed.

PLN Smart Grid On-going Projects

- 1. Deployment of AMI for one millions customers in Jakarta "first stage"
- 2. Four Smart micro grid projects funded by ADB:
 - Selayar : PV 1.3 MWp + Battery 800 kW + Existing Diesel
 - Tahuna : PV 1.3 MWp + Battery 800 kW + Existing Diesel
 - Medang : PV 350 kWp + Battery 1200 kW + 150 kW Diesel
 - Semau : PV 450 kWp + Battery 450 kW + 1600 kW Diesel
- 3. Implementation ADS (Advanced Distribution System) for Sumba Timur and NTT micro-grid system PV + Diesel (US AIDS)
- 4. Digital Substations: 1) Sepatan I : 4 Line Bay, 1 Bus Couple, 3 Trafo Bay and 20 kV cubicle 2) Teluk Naga II : 2 Line Bay, 1 Bus Couple, 2 Trafo Bay and 20 kV cubicle
- 5. *Predictive Analytic on Power Generation:*
 - Remote Engineering, Monitoring, Diagnostic & Optimization Centre (REMDOC) phase 2 in PJB
 - REOC (Reliability Efficiency Optimization Center) in Indonesia Power

PLN Smart Grid On-going Projects

- 6. PLN Smart Grid maturity level assessment using Carnegie Mellon's SGMM (join with India Smart Grid Forum and Universitas Indonesia)
- 7. Block Chain pilot project phase 1 (PLN Research Institute join with Chaintope, Japan)
- 8. Smart Grid and Power System Study funded by Economic Ministry of France (join with Think Smart Grid France): 1) Defence scheme of Sulawesi system 2) Mandalika Smart micro grid

What's Collaboration PLN Needs?

1. Smart Grid Study:

- Renewable energy grid integration
- Grid defense scheme and stability system
- DC House for rural electrification
- Wide Area Monitoring Control
- Distributed energy resources etc.

2. "Pilot Project" for Smart Grid:

- Hybrid Energy Management System → Smart Micro Grid
- BESS (Battery Energy Storage System) application
- e-Mobility (Electric Vehicle platform)
- Distribution Automation
- Digitalization of Sub-station etc.

3. "Capacity building" for Smart Grid

THANK YOU

indra.aditya@pln.co.id PT PLN (Persero) Research Institute