

SGtech School of Renewable Energy and Smart Grid Technology Naresuan University

Update Smart Grid Situation and trends in Thailand

5th ASEAN SMART GRID CONGRESS (ASGC 5) December 3rd, 2019

Dr. Yodthong Mensin

Deputy-Director for Research and Academic Affairs SGtech, Naresuan University

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

sgtech@nu.ac.th

Smart Grid Plan in Thailand

Power Development Plan (PDP 2018)*

- Peak power and RE capacity about 30,000 MW and 10,000 MW respectively*
- Forecasting peak power 54,000 MW with increasing the RE capacity up to 20,000 MW (30%) in 2037

RE capacity target in 2037

Pain point: Need to use the BESS applications for maintaining of power quality in transmission system

* update in April 2019 (PDP 2018 - 2037)

Followus

Smart Grid Plan in Thailand

Smart Grid Development Plan (PDP 2015)*

- Focusing of Smart Grid technology area with budget about 6,600 Million USD
- 5 components SG technology areas based for Thailand

Five components of Smart Grid development plan

* Roadmap SG development plan 2015 - 2037

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

sgtech@nu.ac.th

SG development plan 5 components:

- 1. Energy Management System: EMS
- 2. Pricing & Incentive Design for Demand Response
- 3. Microgrid System
- 4. Energy Storage System
- 5. National RE Forecast Model

Battery Energy Storage System (BESS)

Electricity Generating Authority of Thailand (EGAT) Planning project (middle part of Thailand)

- Too much of renewable energy installation in this areas such as
 Lopburi province about 300 MW and Chaiyaphum province about 200 MW
- Using **BESS about 16 MW** in Chaiyaphum and **21 MW** in Lopburi province
- Both of area using BESS for integration of renewable energy: RE Smoothing, Frequency Regulation and Peak Shifting

Substation	Renewable Energy Plan in 2020		Total
	Wind (MW)	Solar (MW)	(1/1///)
Chaiyaphum	140.7	77.5	218.2
Lopburi	207.0	94.2	301.2

- 2018 : Design and Planning Phase
- 2019 : Constructions Phase
- Estimation cost : 65 Million USD

Renewable energy installation in the middle part of Thailand

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

"Hadhanaanuas"

Battery Energy Storage System (BESS)

Provincial Electricity Authority (PEA) Planning project (Samui Island: Surat Thani province)

- Increasing of demand every day with power limitations of transmission systems
- Using **BESS about 25 MW** for peak clipping (3 hr) and demand reduction (10 hr)

Samui Island in the southern part of Thailand

Battery Energy Storage System (BESS)

Metropolitan Electricity Authority (MEA) Planning project (Bangkok: Pathumwan Substation)

- Increasing the peak demand in this area because Chulalongkorn University is
 planning to set up the Smart City Project (increasing of demand consumption: 2 MW)
- Using **BESS 1.2 MWh** for load leveling and spinning reserve

CHULA SMART CITY PROJECT

School of Renewable Energy and Smart Grid Technology Naresuan University, Phitsanulok, Thailand

sgtech@nu.ac.th

Automated Demand Response (ADR)

Automated Demand Response (Pattaya: Chonburi province)

- Using Direct Load Control (DLC) function for smart home and smart building
- Cooperate with EGAT (DRMS) for testing system in the PEA customer area

*** Data Model for notification and report : At least OpenADR2.0b.

ADR architectural design concept

NETP & NDUP Project

National Energy Trading Platform (NETP) lead to National Utility Digital Platform (NDUP)

NETP Concept:

The prosumer can buy and sell excess energy directly between buildings by using blockchain technology

NETP & NDUP Project

SGtech School of Renewable Energy and Smart Grid Technology Naresuan University

NETP & NDUP Roadmap

SGtech

School of Renewable Energy and Smart Grid Technology Naresuan University

Thank You

Follow us

