SMART GRID IN MALAYSIA : POLICY, PLANNING AND INSTITUTIONAL ASPECTS

SURAIYA NADZRAH RAMLI ENERGY COMMISSION, MALAYSIA

5th ASEAN SMART GRID CONGRESS 3-4 OCTOBER 2019 | Le Grandeur Palm Resort Hotel, Johor

2 key external challenges (4D's revolution & MESI 2.0)

REIMAGINING MESI 2025

Enhancing Governance of Malaysia Electricity Supply Industry (MESI)

Grid of The Future (GoTF) in Distribution Network

Smart Grid technology showed TNB the obvious; what is needed to support the GoM & building the Nation – we have designed a "Grid of the Future" (GoTF)

TNB's Grid of the Future to support the Government in building the nation's future

GRID oF THE FUTURE (GoTF) KEY DRIVING FACTORS

Implementation of projects

Source: Special Projects in IBR RP2 Delivering the Grid of The Future (GoTF) by TNB

In building the GoTF; it will be a more complex grid, with bi-directional flows at consumer and local grid level – AMI becomes the foundational element

A game-changing electricity distribution network – defining the future for Peninsular Malaysia

Grid of The Future (GoTF)

Source: TNB Distribution Network Special Projects Report (AMI only) for the Incentive Based Regulation (IBR) Regulatory Period 2 Review

1. Grid of the Future – AMI: Infrastructure that underpins and enables Smart Grid

Objective: Implement across Peninsular Malaysia an Advanced Metering Infrastructure (AMI) that enhances customer control, supports national objectives, enables effective and efficient management of the grid.

Proposition:

- Provide a "Smart Meter" to all customers.
- Functionality facilitates, RE, FiT, NEM, ToU, remote connect / disconnect, DSM capabilities and Home Energy Management.
- Reduce customer complaints on billing related queries
- National Objectives include RE, EV and energy storage support

Benefits:

- Empower the Customer to manage their usage, load profiling info and participation in new service offerings (i.e. ToU / Demand Response program)
- On time / prompt billing
- Planned outage and restoration notification to customers
- Pre-paid option for billing
- As a grid sensor supports DA and VVO thereby improving supply reliability
- Facilitates the introduction of RE / EV / Distributed Generation

Cost Components:

- Supply and install 8.27million Smart Meters
- Communication systems
- Network Management and security / Meter Operations Centre
- IT Systems (Hardware & Software)
- IT Systems Integration

ADVANCED METERING INFRASTRUCTURE (AMI)

METER

OWER LINE COMMUNICATIO

ELULAR / GPRS

Aires Insulancent concer Deningulan Malaysia an Ashuar a d Matarin a Isf

2. Grid of the Future – Distribution Automation :

Driving operational efficiency and improving reliability

Objective: To deliver improved grid reliability, customer satisfaction and operational efficiency. Reduce system losses and support for GoTF functions.

Proposition:

- Detect location and type of fault, enable automatic isolation and power
- rerouting.
 Requires deployment of SCADA/DMS technologies integrated with field equipment
- DA is a support for other GoTF functions (DG, VVO, AMI, ESS).

Benefits:

- Outage duration reduction by automatically re-switching the network
- As a grid sensor –sense and control the network dynamically
- Improve network management
- Enhanced customer satisfaction – by minimising outage frequency and

Cost Components:

- DA equipment (i.e. RTU, FTU, RMU, VCB)
- Installation and maintenance
- Communications
 infrastructure

This infrastructure also provides a base for the VVO project

3. Grid of the Future – Mobility Solutions

Enhance customer satisfaction through faster supply connection & increase reliability

Objective: Slim down work flows and reduce task complexity; eliminate paperwork and simplify data collection. Increase worker safety.

Proposition:

 Mobility technologies deliver ÷Ш

information to and from the field and enrich it with situational awareness

- All field and supervisory work flow can be impacted.
- Productivity improvements from 5% to 50% are not uncommon.

Benefits:

- Mobility enables business process automation increasing productivity
- Improves data collection eliminating replication of data and errors
- Makes the field worker situationally aware
- Enhanced customer satisfaction by reducing time to repair

Cost Components:

Base infrastructure for a Mobility platform:

- Security and policy deployment
- Development of apps
- Purchase of devices
- Management of end devices
- · Corp Apps store
- Integration with backend systems

4. Grid of the Future – GIS

Enhance customer satisfaction through faster response, enable coordinated system performance and information notification

Objective: Improve TNB's service quality, reduce operating costs and achieve greater operational efficiency. Included is two data collection technologies to provide allow accurate spatial data input.

Proposition:

- Mapping 1.3 million kilometres of distribution wire and how it is connected to over 8.6 million customers
- Improves the productivity of many tasks and activities such as fault and customer location, constructed assets and their spatial relationships.
- Integrates with key applications to enhance their effectiveness

Benefits:

Improve operations through

- Accurate Location information
- Assisting sharing of information
- Provide a means to empower field staff
- Facilitating planning and construction
- Locate customers faster

Improve other systems by providing Geospatial reference:

- Asset Management
- Outage location
- Mobility
- Grid Switching

Cost Components:

GIS system software implementation and integration

- Support and licensing
- ERMS data management
- Mobile mapping with laser scanning for LV data collection
- UAV (Un-manned Aerial Vehicle) for MV overhead bare conductor data collection

5. Grid of the Future – VVO

Enhance network operations and support Government policy on RE

Objective: Improve power quality, grid efficiency (reduce technical losses). Reduce customer impacts (equipment damage due to voltage variations). Allow integration of higher levels of RE as a distributed generation source.

Proposition:

- VVO enhances
 network efficiency
 - by reducing power losses and mitigates severe voltage variations
- In addition to increasing system efficiencies VVO has the ability to free capacity.
- With Distributed Generation VVO can provide a balance to stabilise the grid and improve the consistency of energy.

Benefits:

Improving power quality – both voltage and reactive power which will:

- Reducing network losses
- Release capacity
- Enhanced customer satisfaction by minimising voltage variations and subsequent equipment damage.

Cost Components:

- Supply capacitor banks for LV and MV.
- Implement and commission pole-top and pad mount devices.
- Other smart grid technology that integrates will be installed in RP3 period.

Source: Special Projects in IBR RP2 Delivering the Grid of The Future (GoTF) by TNB

6. Grid of the Future – Group Street Light Re-lamping

Enhance customer satisfaction through higher reliability of street lighting

Objective: To reduce the street light failure rate and avoid repetitive breakdowns in the same street lighting unit. Reduce complaints and the high cost of maintenance for street lighting.

Proposition:

- Eliminate high failure rates (currently 20%) for street lighting and reduce this failure rate to less than 2%.
- Street lighting failure is correlated to the age of street lighting equipment. This program will ensure lights to be relatively new (young age) and therefore lower failure rate.

Benefits:

- Reduce operation and maintenance costs, savings accrue from a planned replacement over the existing run-to-failure strategy.
- Reduce customer complaints– by taking failures from 20% pa to 2% pa.

Cost Components:

- Capital cost of lamps (for four year replacement).
- Installation cost every four years.

7. Grid of the Future – EV Charging

Enabling the proliferation of electric transport in accordance with Electric Mobility Blueprint

Objective: Implement fast charging infrastructure that kick-starts the uptake of electric vehicles throughout the Malaysian Peninsular. Reduce the Malaysian dependency on oil.

Proposition:

- This is a project specifically to support the **Government National**
- EV Charging Station is one the core infrastructures of EV ecosystem.
- This project aims to fast track the growth of electric mobility and stimulate EV markets into the acceptance of charging stations nationwide by 2020.
- The EV Charging project improves the country's energy sustainability and supports the Governments goal to improve air quality

- **Electric Mobility Blueprint**

National Benefits:

Benefits:

- 1.7 million tonnes of CO2 reduction Enhance economic
- growth RM328 million investment by 2020
- Reduce health care cost related to air pollution
- Energy Supply Industry: Encourage DSM, V2G
- and Improve efficiency Electric mobility industry Boost demand for EVs
 - Rakyat sustainable transport options

Raykat:

64%

Reduce vehicle fuel

maintenance cost by

Improve the air quality

façade discolouration

life by offering the

Increased the quality of

costs 69% and

within cities

Minimise building

Source - EMB

Nominal values quoted

• 24,000 Charging stations

· EV charging point purchase, implementation and

Cost Components:

- Metering
- Floor marking and signage
- O&M costs

So what does the GoTF deliver in Malaysia in 15 years time?

This is a story set for a long-term vision....

LSS

STORAGE

ENERGY

SOLAR

PV

MICRO GRIDS

BIOMASS

FUEL

For our Rakyat

- EV's & Electric Bikes
- Reduced transport bills
- · Solar on the rooftops
- Optimise our power bills
 with ToU & DSM
- Air is cleaner
- Affordable Power

EMBEDDED MICRO RE fits into the grid PROCESSING AUTOMATED **BIG DATA** DEMAND 8 million + Advanced meters ANALYSIS RESPONSE Customer choices: ADVANCED • FIT, NEM, LSS, ToU, DS GRID NETWORK Reliability ↑, outages ↓ NATIONAL TECH Network losses 1 FIBERISATION ELECTRIC CONSUMER PLAN VEHICLES Mobility has transformed all jobs Street Lamp costs & complaints 1 SOCIAL 25,000 public charging stations MOBILITY NETWORK FIELD WORKERS DESIGNED THEIR OWN APP NEM APPS PROSUMER I CAN DIAGNOS ENABLEMENT THE WE'VE DATE COLLECTED BETTER NETWORK CONTROL DECISION LOT OF του DATA maintena - PRECISE CONSUMPTION FORECAST NEED DRIVEN INFORMING CUSTOMERS REAL-TIME THE BETTER RIGHT **T** TOOLS

Source: Incentive Based Regulation (IBR) Proposal For Regulatory Period 2 (2018 – 2020)

For our Nation

- Reduced power costs relative to wage growth
- Subsidies for EV's & Solar
- Malaysia manufactures & exports EV induction pads

For TNB Operations

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

BRIEF ON GEF 6 UNIDO SUSTAINABLE CITY DEVELOPMENT (SCD) IN MALAYSIA

SMART GRID PROJECT

GEF6 Project Overview

Integrated Approach in Urban Planning in both Strategic Contents and Federal-State Level Linkages

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

PROPOSE SMART GRID TECHNICAL COMMITTEE

SMART Grid Project Governance Structure

Project Delivery Partners (PDPs)

SMART Grid Key Deliverables

COMPONENT 1 POLICY FRAMEWORK

- Develop policy and regulatory framework, roadmap and implementation guidelines for Smart Grid;
- Develop scale-up and replication plans for smart grid, allowing other cities to rapidly adopt them.

COMPONENT 2 CAPACITY BUILDING

- Training courses on RE-integrated smart grid, solar powered EV charging stations, EE and RE applications in buildings; costs and benefits analysis on smart grid-related investment
- Training courses (2-3) on data analysis and management smart grid.

AWARENESS

Outreach programmes for stakeholders and consumers on smart grid with RE-powered EV charging stations, EE and RE applications buildings and ICT system

COMPONENT 4 DEMO PROJECT

COMPONENT 4 : SMART GRID DEMO PROJECT

Smart Grid Demo Project at Melaka {Lead by TNBR}

Phase 1

Preliminary Data Integration & Reporting of Selected Energy Projects in Melaka

Phase 2

Data Integration & Analytics for Selected Energy Projects in Melaka, Future Large Scale Solar (LSS) & Rooftop Solar PV Projects via Net Energy Metering (NEM), Feed in Tariff (FiT) and setting-up of Integrated Server Room in Melaka which is also ready for NLDC Connection

Phase 3

Data Integration & Visualization of Selected Energy Projects in Melaka, Future Large Scale Solar (LSS) PV & Rooftop Solar PV Projects via Net Energy Metering (NEM), Feed in Tariff (FiT) and Future Green Mobility Project connected to National Load Dispatch Center (NLDC)

Co-Financing Dir

Direct Financing

The National Energy University

In total, the project is expected to give result in terms of:

- a) Direct annual energy savings of 244,169 GJ in the last year of the project (2021).
- b) A total 20-year reduction of 4,590,386 GJ (assuming a 20-year lifetime of investments).
- c) Annual reductions of 45,089 tonnes CO2eq per year as direct GHG reductions in the last year of the project (2021)
- d) A total 20-year reduction of 847,675 tonnes CO2eq as direct GHG reductions & indirect GHG emissions avoided of 3,607,129 tonnes CO2eq.

No. 12, Jalan Tun Hussein, Precinct 2, 62100 Putrajaya, Malaysia. Toll Free: 1-800-2222-78 Tel: (603) 8870 8500 Fax: (603) 8888 8637

> Suraiya Nadzrah Ramli <u>suraiya@st.gov.my</u>

Deputy Director Electricity/ Gas Supply And Service Quality Unit

