Smart Grid Floating Solar

Dr Thomas REINDL
Deputy CEO
Cluster Director, Solar Energy Systems

Solar Energy Research Institute of Singapore (SERIS)
National University of Singapore (NUS)
$5^{\text {th }}$ ASEAN Smart Grid Congress
Senai, Johor, Malaysia
04 December 2019

SERIS

Solar Energy Research Institute of Singapore

- Founded in 2008; focuses on applied solar energy research
- Part of the National University of Singapore (NUS)
- Rapid growth (now >200 people and $>6000 \mathrm{~m}^{2}$ of space)

\square State-of-the-art laboratories
- R\&D focus is on solar cells, PV modules and PV systems
\square Specialised in professional services for the PV industry
- ISO 9001 \& ISO 17025* certified (* PV Module Testing Lab)

Main R\&D areas of SERIS

Solar cells:

- Silicon wafer solar cells (various cell architectures)
- Tandem solar cells on silicon (e.g. GaAs, perovskites)
- Characterisation \& simulation

PV modules:

- Module development
- Module testing (indoor \& outdoor)
- Module certification
- Characterisation \& simulation

Solar systems:

- System technologies, incl. Floating PV
- PV grid integration
- Solar potential \& energy meteorology
- Urban Solar, incl. BIPV
- Quality assurance of PV systems
- Solar thermal systems

Where Sun Meets Water

The largest floating PV plants

18MWp, Gunsan Retarding Basin South Korea
8.5MW, Sanshan, Wuhu, Anhui

Coal mining subsidence area,
Huainan, Anhui

Image sources: Google Map, Scotra and Sungrow press release.

China's collapsed coal mines turned into a solar opportunity

There are dozens of flooded coal mines in China. Spurred by China's "Top Runner" program, solar developers are turning these environmental and social disasters into an opportunity. Anhui Province is home to the world's largest floating solar installations to date, ranging from 20 megawatts (MW) to 150 MW per site.

Local people who just a few years ago worked underground as coal miners are now being retrained as solar panel assemblers and maintenance person-
nel. They are earning better wages and are no longer exposed to harmful mine conditions known to cause lung disease.

Producing solar power in mining regions while scaling back coal-based power production is one way to improve local air pollution issues in several regions of China.

Source: Authors' compilation based on Mason (2018) and BBC (2018).
~1.4 GWp FPV installed worldwide
\square Annual Installed FPV Capacity \rightarrow Cumulative Installed FPV Capacity

Source: SERIS. Picture: K-Water

Current pipeline is growing fast

With more than 10 GW planned worldwide

World: ~4 TWp with 10\% coverage

Source: SERIS based on the Global Solar Atlas and the GRanD database, © Global Water System Project (2011)
SERIS is a research institute at the National University of Singapore (NUS). SERIS is supported by the National University of Singapore (NUS), National Research Foundation Singapore (NRF) and the Singapore Economic Development Board (EDB).

FPV hybrid with hydropower stations

Examples for Floating PV additions

Example Dam/Reservoir	Region	Reservoir Size	Hydro Power	Area Fraction Required to add same Power of Floating Solar
Narmada Dam	India	375 km ${ }^{2}$	1.5 GW	4\%
Bakun Dam	Malaysia	690 km ${ }^{2}$	2.4 GW	3\%
Lake Volta	Ghana	8500 km ${ }^{2}$	1.0 GW	<1\%
Guri Dam	Venezuela	4250 km ${ }^{2}$	10.2 GW	2\%
Itaipu	Brazil	1300 km ${ }^{2}$	14.0 GW	11\%
Sobradinho "Lake"	Brazil	4220 km ${ }^{2}$	1.0 GW	<1\%
Xiluodu Dam	China	TBD km ${ }^{\mathbf{2}}$	13.8 GW	TBD
Three Gorges Dam	China	1000 km ${ }^{2}$	22.0 GW	22\%
Aswan Dam	Egypt	5000 km ${ }^{2}$	2.0 GW	<1\%
Attaturk Lake and Dam	Turkey	$820 \mathrm{~km}^{2}$	2.4 GW	3\%

Complimentary FPV and hydropower

Joint operation of Floating PV and hydropower station

\checkmark Utilisation of available reservoir surface
\checkmark Existing power grid connection (often not fully utilised)
\checkmark Smoothing of PV variability (by adjusting turbines)
\checkmark Optimise day/night power generation
\checkmark Seasonal benefits (dry / wet seasons)
\Rightarrow Use the reservoirs as "giant battery"

FPV supplier－base is growing fast

SUMITOMO MITSUI CONSTRUCTION CO．，LTD．
isifloating by isigenere III KYORAKU

SUNGRコW

slunssiont

中能会相
Ocean SUn

Oceans of Energy
 AOMA PVV．com

旭東環保科技股份有限公司
SUN RISE E\＆T CORPORATION

ZZ $\underset{\text { PIMESSAllaan }}{\text { ZIMN }}$

Sunfloat ${ }^{\circledR}$

SERIS is a research institute at the National University of Singapore（NUS）．SERIS is supported by the National University of

‘Realized’ capex developments

Floating structure costs decline in Asia

The Singapore floating PV Testbed

\square Total capacity ~ 1 MWp

FLOATING SOLAR PV TEST-BED AT TENGEH RESERVOIR

Project collaborators:

Testbed design and objectives

- Large scale FPV testbed
- Side-by-side comparison of major commercial FPV technologies
- Detailed monitoring
> Environment
> Energy yield
> Module temperature
> Bi-facial module
> Active cooling
- Economics, LCOE

Specific yield and PR

For the first year

Yearly insolation=1601 kWh/m²

Average rooftop system in Singapore

Excluding major downtime

Cables or connectors touching water

\square Causes
> Low clearance from water surface as well as mismatch in module cable length and floats dimension.
$>$ Waves due to wind or boat
\square Consequences
> Leakage and low insulation resistance
$>$ Degradation (corrosion) of cables

Recommendation: better cable routing, matching module \& float dimensions

Breakage of connecting parts

- Mechanical stress
$>$ At the joints of rigid structures
> On equipotential bonding tape/wire
> At the earthing tape connection for grounding

Insulation resistance issues

Inverters starting late
\square Insulation faults observed for some systems
$>$ The insulation resistance $\left(\mathrm{R}_{\text {iso }}\right)$ is low for some floating PV strings.
$>$ Inverters measure $\mathrm{R}_{\text {iso }}$. When $\mathrm{R}_{\text {iso }}$ does not meet the preset threshold, inverters do not start.
> Result: inverters start late (till the $\mathrm{R}_{\text {iso }}$ limit is passed) and thus loss of energy.

Soiling - from bird droppings

- Bird droppings observed on floating PV modules
> Partial shading
> Reduced performance, less energy yield
> Cell reserve biased, hot spots, => can lead to accelerated module degradation

Singapore floating PV Testbed
\square Possible solutions
> Part of the O\&M routine (i.e. immediate actions / cleaning)
> Barrier methods
> Non-barrier methods

- Ultrasonic, Sonic Repeller
- Visual Scare Device

Queen Elizabeth II reservoir, UK

Other potential issues

Due to proximity to water, high humidity

- Potential Induced Degradation (PID)
> Anti-PID modules preferred
- Corrosions (more aggravated for off-shore environments)
> Combiner boxes
> Inverters
> Metal supporting structures
- Risk of solar cables submerged in water
> Electrical safety, earth leakage
> Performance drop, system downtime
- Structural
> Anchoring / mooring needs to be carefully assessed during feasibility study
\Rightarrow Highly valuable results from this testbed shall lead to new technical standards for Floating PV (via IEC TC 82)

First off-shore FPV project in SGP

5 MWp capacity, directly connected to the Singapore power grid
\square Likely world's largest offshore floating PV system, size of 5 football fields
\square Supported by the Singapore Economic Development Board (EDB)

- North of Woodlands Waterfront Park, along the Straits of Johor

Multiple uses for off-shore FPV

Example: Smart Floating Farms (SFF) with fish farming and crops

Source (picture): Smart Solar Farms

Collaboration with the WBG-ESMAP

WORLD BANK GROUP
THE WORLD BANK
IFC
menation

․ Floating Solar Market Report

1. Why floating solar?
2. Technology overview
3. Global market and potential
4. Policy considerations and project structuring
5. Costs of floating solar
6. Suppliers of floating PV systems

Published: June 2019

- Practitioner Handbook

1. Project development overview
2. Initiation phase - Technical considerations
3. Initiation phase - Financial and legal considerations
4. Initiation phase - Environmental and social considerations
5. Construction phase
6. O\&M phase

Published: October 2019

Collaboration with the WBG-ESMAP

The newly released "Floating Solar" reports are freely available for download at the SERIS website:

Floating Solar "Market Report": http://www.seris.sg/doc/publications/ESMAP FloatingSolar TEXT-A4WEB.pdf

Floating Solar "Handbook for Practitioners": http://www.seris.sg/doc/publications/ESMAP FloatingSolar Gde A4\% 20WEBL-REV2.pdf

More info also under:
http://www.seris.sg/publications/scientific-publications.html

Don't hesitate to contact us:

More information at www.seris.sg www.solar-repository.sg

We are also on:

 fin in

